深度学习在过去的几年内迅速发展,发展速度加快了三十倍,人们对于能够高效执行机器学习的算法的需求越来越大。计算机视觉领域权威评测ImageNet大规模图像识别挑战赛(ILSVRC)自2010年举办以来,一直备受关注。每年都有不同的深度学习框架模型大放异彩,夺得冠军。
【ImageNet 历届冠军及技术回顾】
在这几年的不断发展中,亮才也在尝试使用不同的深度学习模型来实现箱号识别功能,综合考虑神经网络复杂度、识别速度、准确率等因素,选择合适的模型。并通过对参数的调校,对算法的优化等方式来提升整体的识别准确率。目前我们的箱号识别准确率已经超过99%,并且平均识别时间控制在1秒以内,位于行业领先水平。
在箱号识别这一领域,大体可以分为两种技术,传统的OCR(光学字符识别)技术与基于深度学习的AI技术。在这两种技术上,我们都有非常丰富的积累与经验。目前亮才的箱号识别功能综合了OCR技术与深度学习算法,根据两者的识别结果,为用户提供准确的箱号。
箱号识别的主要难点在于集装箱图片包含大量信息,对于箱号部分的提取比较困难,而不同类型的集装箱箱号特征也不一致,同时还会受到光线、图像清晰度、图片方向等因素的影响。因此,在使用OCR技术进行识别前,我们会对图像进行一些预处理的操作,把用户随手拍的集装箱图片转变成一张机器能够识别的图片,同时设置一些校验方法,确保机器识别的箱号是正确的。
相比之下,深度学习算法有着自己的优势,在学习过集装箱图片的特征之后,识别时无需对图片做太多的预处理,凭借自己的智能视觉就可以快速定位出箱号并识别。
目前,在这两种技术上,亮才都做到了99%以上的识别率。
【集装箱信息识别示意图】
同时,亮才也在开发集装箱毛重与封号信息的识别功能,这些信息的识别还存在着字体小,信息密集难定位,字迹不清等难点,但在我们的努力下,已经取得了不错的成果,对于清晰的正面图像都有较好的效果。
【封号识别示意图】
从仓储规划,看DeepSeek的实用性、局限性和突破之道
2790 阅读中国物流集团或迎第五家上市公司,国家队进一步释放行业整合信号?
2367 阅读一年净赚超22亿、投资海外仓导致净利润腰斩、苦苦等待重整……跨境电商巨头们发展冰火两重天
2227 阅读DeepSeek对国内物流自动化及智能仓储领域主要上市企业的经营数据及效率分析报告(之二)
1366 阅读中通快运官宣启动大票零担业务?
1168 阅读单月总货量同比增长734.4%!独家解读顺嘉国际货站跨越式增长背后的效率密码
1127 阅读畅想2.0 · AI重塑物流行业
1103 阅读顺丰同城宣布接入DeepSeek大模型
1078 阅读安得智联正式接入DeepSeek-R1 满血版!
1106 阅读宁德时代与DHL达成合作
1062 阅读